Hackwood Primary Academy
Calculation \& Fluency Policy - Progression in Subtraction
Last updated: $20^{\text {th }}$ September 2022

This document outlines the progression in addition strategies throughout our academies. Teaching staff should consider using previously taught written methods as part of visually representing mental methods later in a child's school journey. For example, using a number line (taught as a written method in much of KS1) as a way to visually represent mental methods in Key Stage 2.

It has been carefully put together in line with the National Curriculum (2014), the Government's non-statutory guidance for teaching mathematics (June 2020) and our existing approach to teaching mathematics. This document has been organised respective of agerelated expectations and learning should still be differentiated appropriately.
Pupils should also learn to relate subtraction contexts and equations to mathematical diagrams such as bar models, number
In Year 1, pupils need to be able
\qquad
\qquad expressions and equations to represent partitioning (decomposing a number into parts) and reduction (decreasing a quantity by taking some away).

In Year 2, pupils will at first use manipulatives, such as tens frames, to understand the strategies for subtracting across 10. However, they should later be able to carry out these calculations mentally, using their fluency in complements to 10 and partitioning. Pupils are fluent in these calculations when they no longer rely on extensive written methods.

When subtracting within 100, pupils should be able to subtract multiples of 10 mentally, using their known addition facts. They should be able to demonstrate their reasoning either verbally or with manipulatives or drawings.

The semi-formal methods are used to help pupils learn how to record the steps for subtracting 2 digit numbers that are not multiples of 10 using informal written notation.

Pupils do not need to learn formal written methods for subtraction in Year 2, but column subtraction may be touched on as part of finding the difference in the semiformal method.

In Year 4, pupils should be able to subtract one four-digit number from another using column subtraction. They should be able to apply the method to calculations where the subtrahend has fewer digits than the minuend, and should be able to exchange through 0 .

Pupils should make sensible decisions about how and when to use column subtraction. For example, when the minuend is a multiple of 1,000, they may transform to an equivalent calculation, avoiding the need to exchange through zeroes.

When calculating time (start time, end time and duration), our policy is to do so using a number line.

$$	Column subtraction $\begin{array}{r} 56^{14} 8^{12} 38 \\ -2789 \\ \hline 3749 \\ \hline \end{array}$	Subtrahend and minuend with different amounts of digits 1217996 $-\quad 899$ 9	Regrouping through zero	Using alternative calculations to avoid regrouping through zero
$\begin{aligned} & \tilde{0} \\ & \frac{0}{0} \\ & \text { 人 } \\ & \tilde{0} \\ & \tilde{y} \end{aligned}$				

In Year 6, pupils should be able to subtract one six-digit number from another using column subtraction. In addition, they should be able to apply the column method to calculations with numbers up to 2 decimal places. This includes numbers with differing amounts of decimal places as well as exchanging through 0 .

Pupils should make sensible decisions about how and when to use column methods. For example, when subtracting a decimal fraction from a whole number, pupils may be able to use their knowledge of complements, avoiding the need to exchange through zeros.

$\frac{\tilde{u}}{2}$	Column subtraction
さ	$8^{5} 6{ }^{\prime 3} 5^{6} x^{\prime} 2$
$$	- 544237
	319335
	+1:
	-

